在合肥举办的2017 HPC CHINA 全国高性能计算学术年会上,中国工程院院士 国防科技大学计算机学院院长廖湘科分享了最新的观点。
中国工程院院士 国防科技大学计算机学院院长廖湘科
他认为“高性能计算为人工智能新崛起提供了计算引擎,大数据为人工智能的新崛起提供了数据引擎。人工智能与大数据牵引高性能计算机呈现新形态。”并提出人工智能、大数据和高性能计算融合成为趋势。
他分析高性能计算不仅解决具备“尺度超大、尺度超小、时变超快、时变超慢、过程超危险、过程超昂贵”“六超”特征的挑战性问题,今后还会向微观深入、向宏观拓展、向极端条件发展。
人工智能的快速发展,使得计算能力成为瓶颈,而GPU开始在超算领域崭露头角。科学家借鉴GPU在超算领域经验,将其引入人工智能。GPU的出现对人工智能新崛起起到了积极推动作用。因为GPU应用是深度学习得以发展的四大因素之一。
AI的支柱包括计算能力、算法和数据,三大要素。
还提出人工智能形态产生了分化,廖湘科定义为重型AI和轻型AI。
重型AI是基于大数据、大机器的模型训练,高吞吐率的智能推理和复杂的关联分析,形成的大数据、大模型多任务模式。 轻型AI:在重型AI的基础上,针对目标硬件的裁剪之后部署,在智能终端迅速得到结果的模式。
他还提出未来高性能计算也将实现云化,HPC将实现云上HPC和定制HPC两种路线。
他还认为融合发展是必由之路。高性能计算必须满足计算科学、数据科技和智能科学的新需求。高性能计算可以满足新需求,在大规模并行系统搭建、分布式架构管理和运维,高并行代码运行和优化方面是高性能的强项。也是为AI提供坚实现实的平台基础。
融合发展意味着实现异构融合系统结构成为核心需求。而CPU与GPU、FPGA、TPU等加速器技术正处于百花齐放的局面。
今天高性能通用CPU仍然是HPC的基础核心,GPU在深度学习领域占有绝对主导地位。
最后,廖湘科谈到现有的HPC软件体系,制约着新型器件或颠覆性计算结构的使用,硬件技术的发展,尤其是异构计算发展,更加剧了应用软件的困难。他提出,HPC生态必须协调考虑高性能计算、应用软件、模型和算法以及人才队伍的建设。
声明: 此文观点不代表本站立场;转载须要保留原文链接;版权疑问请联系我们。