Hadoop教程二:讲解MapReduce用户编程接口
MapReduce – 用户编程接口
下面将着重谈下MapReduce框架中用户经常使用的一些接口或类的详细内容。了解这些会极大帮助你实现、配置和优化MR任务。当然javadoc中对每个class或接口都进行了更全面的陈述,这里只是一个指引教程。
首先来看下Mapper和Reducer接口,通常MR应用都要实现这两个接口来提供map和reduce方法,这些是MRJob的核心部分。
Mapper
Mapper 将输入的kv对映射成中间数据kv对集合。Maps 将输入记录转变为中间记录,其中被转化后的记录不必和输入记录类型相同。一个给定的输入对可以映射为0或者多个输出对。
在MRJob执行过程中,MapReduce框架根据提前指定的InputFormat(输入格式对象)产生InputSplit(输入分片),而每个InputSplit将会由一个map任务处理。
总起来讲,Mapper实现类通过JobConfigurable.configure(JobConf)方法传入JobConf对象来初始化,然后在每个map任务中调用map(WritableComparable,Writable,OutputCollector,Reporter)方法处理InputSplit的每个kv对。MR应用可以覆盖Closeable.close方法去处理一些必须的清理工作。
输出对不一定和输入对类型相同。一个给定的输入对可能映射成0或者很多的输出对。输出对是框架通过调用OutputCollector.colect(WritableComparable,Writable)得到。
MR应用可以使用Reporter汇报进度,设置应用层级的状态信息,更新计数器或者只是显示应用处于运行状态等。
所有和给定的输出key关联的中间数据都会随后被框架分组处理,并传给Reducer处理以产生最终的输出。用户可以通过JobConf.setOutputKeyComparatorClass(Class)指定一个Comparator控制分组处理过程。
Mapper输出都被排序后根据Reducer数量进行分区,分区数量等于reduce任务数量。用户可以通过实现自定义的Partitioner来控制哪些keys(记录)到哪个Reducer中去。
此外,用户还可以指定一个Combiner,调用JobConf.setCombinerClass(Class)来实现。这个可以来对map输出做本地的聚合,有助于减少从mapper到reducer的数据量。
经过排序的中间输出数据通常以一种简单的格式(key-len,key,value-len,value)存储。应用可以决定是否或者怎样被压缩以及压缩格式,可以通过JobConf来指定.
Map数
通常map数由输入数据总大小决定,也就是所有输入文件的blocks数目决定。
每个节点并行的运行的map数正常在10到100个。由于Map任务初始化本身需要一段时间所以map运行时间至少在1分钟为好。
如此,如果有10T的数据文件,每个block大小128M,最大使用为82000map数,除非使用setNumMapTasks(int)(这个方法仅仅对MR框架提供一个建议值)将map数值设置到更高。
Reducer
Reducer 根据key将中间数据集合处理合并为更小的数据结果集。
用户可以通过JobConf.setNumReduceTasks(int)设置作业的reducer数目。
整体而言,Reducer实现类通过JobConfigurable.configure(JobConf)方法将JobConf对象传入,并为Job设置和初始化Reducer。MR框架调用 reduce(WritableComparable, Iterator, OutputCollector, Reporter) 来处理以key被分组的输入数据。应用可以覆盖Closeable.close()处理必要的清理操作。
Reducer由三个主要阶段组成:shuffle,sort,reduce。
shuffle
输入到Reducer的输入数据是Mapper已经排过序的数据.在shuffle阶段,框架根据partition算法获取相关的mapper地址,并通过Http协议将数据由reducer拉取到reducer机器上处理。
sort
框架在这个阶段会根据key对reducer的输入进行分组(因为不同的mapper输出的数据中可能含有相同的key)。
shuffle和sort是同时进行的,同时reducer仍然在拉取map的输出。
Secondary Sort
如果对中间数据key进行分组的规则和在处理化简阶段前对key分组规则不一致时,可以通过 JobConf.setOutputValueGroupingComparator(Class)设置一个Comparator。因为中间数据的分组策略是通过 JobConf.setOutputKeyComparatorClass(Class) 设置的,可以控制中间数据根据哪些key进行分组。而JobConf.setOutputValueGroupingComparator(Class)则可用于在数据连接情况下对值进行二次排序。
Reduce(化简)
这个阶段框架循环调用 reduce(WritableComparable, Iterator, OutputCollector, Reporter) 方法处理被分组的每个kv对。
reduce 任务一般通过 OutputCollector.collect(WritableComparable, Writable)将输出数据写入文件系统FileSystem。
应用可以使用Reporter汇报作业执行进度、设置应用层级的状态信息并更新计数器(Counter),或者只是提示作业在运行。
注意,Reducer的输出不会进行排序。
Reducer数目
合适的reducer数目可以这样估算:
(节点数目mapred.tasktracker.reduce.tasks.maximum)乘以0.95 或 乘以1.75。
因子为0.95时,当所有map任务完成时所有reducer可以立即启动,并开始从map机器上拉取数据。因子为1.75时,最快的一些节点将完成第一轮reduce处理,此时框架开始启动第二轮reduce任务,这样可以达到比较好的作业负载均衡。
提高reduce数目会增加框架的运行负担,但有利于提升作业的负载均衡并降低失败的成本。
上述的因子使用最好在作业执行时框架仍然有reduce槽为前提,毕竟框架还需要对作业进行可能的推测执行和失败任务的处理。
不使用Reducer
如果不需要进行化简处理,可以将reduce数目设为0。
这种情况下,map的输出会直接写入到文件系统。输出路径通过setOutputPath(Path)指定。框架在写入数据到文件系统之前不再对map结果进行排序。
Partitioner
Partitioner对数据按照key进行分区,从而控制map的输出传输到哪个reducer上。默认的Partitioner算法是hash(哈希。分区数目由作业的reducer数目决定。
HashPartitioner 是默认的Partitioner。
Reporter
Reporter为MR应用提供了进度报告、应用状态信息设置,和计数器(Counter)更新等功能.
Mapper和Reducer实现可以使用Reporter汇报进度或者提示作业在正常运行。在一些场景下,应用在处理一些特殊的kv对时耗费了过多时间,这个可能会因为框架假定任务超时而强制停止了这些作业。为避免该情况,可以设置mapred.task.timeout 为一个比较高的值或者将其设置为0以避免超时发生。
应用也可以使用Reporter来更新计数(Counter)。
OutputCollector
OutputCollector是MR框架提供的通用工具来收集Mapper或者Reducer输出数据(中间数据或者最终结果数据)。
Hadoop MapReduce提供了一些经常使用的mapper、reducer和partioner的实现来。这些工具可以点击这里进行学习。
英文原文:cloudera
在mapreduce中设计了Speculator接口作为推断执行的统一规范,DefaultSpeculator作为一种服务在实现了Speculator的同时继承了AbstractService,DefaultSpeculator是mapreduce的默认实现。
Ubuntu 12.04单机版环境中搭建hadoop详细教程,在Ubuntu下创建hadoop用户组和用,创建hadoop用户。
据测试结果得知,在使用了206个EC2节点的情况下,Spark将排序用时缩短到了23分钟。这意味着在使用十分之一计算资源的情况下,相同数据的排序上,Spark比MapReduce快3倍!
这篇文章将介绍基于物品的协同过滤推荐算法案例在TDWSpark与MapReudce上的实现对比,相比于MapReduce,TDWSpark执行时间减少了66%,计算成本降低了40%。
过去两年,Hadoop社区对MapReduce做了很多改进,但关键的改进只停留在了代码层,Spark作为MapReduce的替代品,发展很快,其拥有来自25个国家超过一百个贡献者,社区非常活跃,未来可能取代MapReduce。
【聚焦搜索,数智采购】2021第一届百度爱采购数智大会即将于5月28日在上海盛大开启!
本次大会上,紫晶存储董事、总经理钟国裕作为公司代表,与中国—东盟信息港签署合作协议
XEUS统一存储已成功承载宣武医院PACS系统近5年的历史数据迁移,为支持各业务科室蓬勃扩张的数据增量和访问、调用乃至分析需求奠定了坚实基础。
大兆科技全方面展示大兆科技在医疗信息化建设中数据存储系统方面取得的成就。
双方相信,通过本次合作,能够使双方进一步提升技术实力、提升产品品质及服务质量,为客户创造更大价值。