1、Map-Reduce的逻辑过程
假设我们需要处理一批有关天气的数据,其格式如下:
按照ASCII码存储,每行一条记录
每一行字符从0开始计数,第15个到第18个字符为年
第25个到第29个字符为温度,其中第25位是符号+/-
0067011990999991950051507+0000+
0043011990999991950051512+0022+
0043011990999991950051518-0011+
0043012650999991949032412+0111+
0043012650999991949032418+0078+
0067011990999991937051507+0001+
0043011990999991937051512-0002+
0043011990999991945051518+0001+
0043012650999991945032412+0002+
0043012650999991945032418+0078+
现在需要统计出每年的最高温度。
Map-Reduce主要包括两个步骤:Map和Reduce
每一步都有key-value对作为输入和输出:
map阶段的key-value对的格式是由输入的格式所决定的,如果是默认的TextInputFormat,则每行作为一个记录进程处理,其中key为此行的开头相对于文件的起始位置,value就是此行的字符文本
map阶段的输出的key-value对的格式必须同reduce阶段的输入key-value对的格式相对应
对于上面的例子,在map过程,输入的key-value对如下:
(0,0067011990999991950051507+0000+)
(33,0043011990999991950051512+0022+)
(66,0043011990999991950051518-0011+)
(99,0043012650999991949032412+0111+)
(132,0043012650999991949032418+0078+)
(165,0067011990999991937051507+0001+)
(198,0043011990999991937051512-0002+)
(231,0043011990999991945051518+0001+)
(264,0043012650999991945032412+0002+)
(297,0043012650999991945032418+0078+)
在map过程中,通过对每一行字符串的解析,得到年-温度的key-value对作为输出:
(1950, 0)
(1950, 22)
(1950, -11)
(1949, 111)
(1949, 78)
(1937, 1)
(1937, -2)
(1945, 1)
(1945, 2)
(1945, 78)
在reduce过程,将map过程中的输出,按照相同的key将value放到同一个列表中作为reduce的输入
(1950, [0, 22, –11])
(1949, [111, 78])
(1937, [1, -2])
(1945, [1, 2, 78])
在reduce过程中,在列表中选择出最大的温度,将年-最大温度的key-value作为输出:
(1950, 22)
(1949, 111)
(1937, 1)
(1945, 78)
其逻辑过程可用如下图表示:
下图大概描述了Map-Reduce的Job运行的基本原理:
下面我们讨论JobConf,其有很多的项可以进行配置:
setInputFormat:设置map的输入格式,默认为TextInputFormat,key为LongWritable,value为Text
setNumMapTasks:设置map任务的个数,此设置通常不起作用,map任务的个数取决于输入的数据所能分成的inputsplit的个数
setMapperClass:设置Mapper,默认为IdentityMapper
setMapRunnerClass:设置MapRunner, maptask是由MapRunner运行的,默认为MapRunnable,其功能为读取inputsplit的一个个record,依次调用Mapper的map函数
setMapOutputKeyClass和setMapOutputValueClass:设置Mapper的输出的key-value对的格式
setOutputKeyClass和setOutputValueClass:设置Reducer的输出的key-value对的格式
setPartitionerClass和setNumReduceTasks:设置Partitioner,默认为HashPartitioner,其根据key的hash值来决定进入哪个partition,每个partition被一个reduce task处理,所以partition的个数等于reducetask的个数
setReducerClass:设置Reducer,默认为IdentityReducer
setOutputFormat:设置任务的输出格式,默认为TextOutputFormat
FileInputFormat.addInputPath:设置输入文件的路径,可以使一个文件,一个路径,一个通配符。可以被调用多次添加多个路径
FileOutputFormat.setOutputPath:设置输出文件的路径,在job运行前此路径不应该存在
当然不用所有的都设置,由上面的例子,可以编写Map-Reduce程序如下:
public class MaxTemperature {
publicstatic void main(String[] args) throws IOException {
if (args.length != 2) {
System.err.println("Usage: MaxTemperature ");
System.exit(-1);
}
JobConf conf = new JobConf(MaxTemperature.class);
conf.setJobName("Max temperature");
FileInputFormat.addInputPath(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
conf.setMapperClass(MaxTemperatureMapper.class);
conf.setReducerClass(MaxTemperatureReducer.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
JobClient.runJob(conf);
}
}
3、Map-Reduce数据流(data flow)
Map-Reduce的处理过程主要涉及以下四个部分:
客户端Client:用于提交Map-reduce任务job
JobTracker:协调整个job的运行,其为一个Java进程,其main class为JobTracker
TaskTracker:运行此job的task,处理input split,其为一个Java进程,其mainclass为TaskTracker
HDFS:hadoop分布式文件系统,用于在各个进程间共享Job相关的文件
3.1、任务提交
JobClient.runJob()创建一个新的JobClient实例,调用其submitJob()函数。
向JobTracker请求一个新的job ID
检测此job的output配置
计算此job的input splits
将Job运行所需的资源拷贝到JobTracker的文件系统中的文件夹中,包括jobjar文件,job.xml配置文件,input splits
通知JobTracker此Job已经可以运行了
提交任务后,runJob每隔一秒钟轮询一次job的进度,将进度返回到命令行,直到任务运行完毕。
3.2、任务初始化
当JobTracker收到submitJob调用的时候,将此任务放到一个队列中,job调度器将从队列中获取任务并初始化任务。
初始化首先创建一个对象来封装job运行的tasks, status以及progress。
在创建task之前,job调度器首先从共享文件系统中获得JobClient计算出的input splits。
其为每个input split创建一个map task。
每个task被分配一个ID。
3.3、任务分配
TaskTracker周期性的向JobTracker发送heartbeat。
在heartbeat中,TaskTracker告知JobTracker其已经准备运行一个新的task,JobTracker将分配给其一个task。
在JobTracker为TaskTracker选择一个task之前,JobTracker必须首先按照优先级选择一个Job,在最高优先级的Job中选择一个task。
TaskTracker有固定数量的位置来运行map task或者reduce task。
默认的调度器对待map task优先于reduce task
当选择reduce task的时候,JobTracker并不在多个task之间进行选择,而是直接取下一个,因为reducetask没有数据本地化的概念。
3.4、任务执行
TaskTracker被分配了一个task,下面便要运行此task。
首先,TaskTracker将此job的jar从共享文件系统中拷贝到TaskTracker的文件系统中。
TaskTracker从distributed cache中将job运行所需要的文件拷贝到本地磁盘。
其次,其为每个task创建一个本地的工作目录,将jar解压缩到文件目录中。
其三,其创建一个TaskRunner来运行task。
TaskRunner创建一个新的JVM来运行task。
被创建的child JVM和TaskTracker通信来报告运行进度。
3.4.1、Map的过程
MapRunnable从inputsplit中读取一个个的record,然后依次调用Mapper的map函数,将结果输出。
map的输出并不是直接写入硬盘,而是将其写入缓存memory buffer。
当buffer中数据的到达一定的大小,一个背景线程将数据开始写入硬盘。
在写入硬盘之前,内存中的数据通过partitioner分成多个partition。
在同一个partition中,背景线程会将数据按照key在内存中排序。
每次从内存向硬盘flush数据,都生成一个新的spill文件。
当此task结束之前,所有的spill文件被合并为一个整的被partition的而且排好序的文件。
reducer可以通过http协议请求map的输出文件,tracker.http.threads可以设置http服务线程数。
3.4.2、Reduce的过程
当map task结束后,其通知TaskTracker,TaskTracker通知JobTracker。
对于一个job,JobTracker知道TaskTracer和map输出的对应关系。
reducer中一个线程周期性的向JobTracker请求map输出的位置,直到其取得了所有的map输出。
reduce task需要其对应的partition的所有的map输出。
reduce task中的copy过程即当每个map task结束的时候就开始拷贝输出,因为不同的maptask完成时间不同。
reduce task中有多个copy线程,可以并行拷贝map输出。
当很多map输出拷贝到reduce task后,一个背景线程将其合并为一个大的排好序的文件。
当所有的map输出都拷贝到reduce task后,进入sort过程,将所有的map输出合并为大的排好序的文件。
最后进入reduce过程,调用reducer的reduce函数,处理排好序的输出的每个key,最后的结果写入HDFS。
3.5、任务结束
当JobTracker获得最后一个task的运行成功的报告后,将job得状态改为成功。
当JobClient从JobTracker轮询的时候,发现此job已经成功结束,则向用户打印消息,从runJob函数中返回。
如有不懂,欢迎拨打10010或10086,转何哲江。
原文链接:http://blog.csdn.net/u011340807/article/details/24630467
XSKY开发了基于对象存储XEOS的专用Hadoop HDFS高性能客户端XSKY HDFS Client。
原先支持Hadoop的四大商业机构纷纷宣布支持Spark,包含知名Hadoop解决方案供应商Cloudera和知名的Hadoop供应商MapR。
证券交易数据属于典型的结构化数据,采用Sql on Hadoop[1]技术,既可用廉价PC服务器获得良好的容量线性扩展能力,又可提供便于统计分析的SQL接口方便数据应用开发。
本文总结Hadoop十个认识误区,帮助大家更好地理解和学习Hadoop。由于Hadoop本身是由并行运算架构(MapReduce)与分布式文件系统(HDFS)所组成,所以我们也看到很多研究机构或教育单位,开始尝试把部分原本执行在HPC 或Grid上面的任务
数据产生后,意味着数据的采集工作已经完成,那么数据的输入与有效输出问题怎么破解?
【聚焦搜索,数智采购】2021第一届百度爱采购数智大会即将于5月28日在上海盛大开启!
本次大会上,紫晶存储董事、总经理钟国裕作为公司代表,与中国—东盟信息港签署合作协议
XEUS统一存储已成功承载宣武医院PACS系统近5年的历史数据迁移,为支持各业务科室蓬勃扩张的数据增量和访问、调用乃至分析需求奠定了坚实基础。
大兆科技全方面展示大兆科技在医疗信息化建设中数据存储系统方面取得的成就。
双方相信,通过本次合作,能够使双方进一步提升技术实力、提升产品品质及服务质量,为客户创造更大价值。